Formulary Waste Management
Prof. Dr.-Ing. habil W. Bidlingmaier \& Dr.-Ing. Christian Springer
Projekt Orbit | Dr. W. Bidlingmaier | Bauhaus Universität Weimar | www.orbit-online.net

1 Boyle's Law

Boyle's law (or Boyle-Mariotte), named after Robert Boyle (1627-1691) describes the dependancy of the volume and pressure of a gas. Boyle's law states that the pressure of an ideal gase is inversely proportional to its volume provided the temperature and quantity remain constant. If the pressure on a specific quantity of gas is increased the volume decreases. On decreasing the pressure the volume expands.

$$
\begin{aligned}
& \text { p = pressure } \\
& \mathrm{V}=\text { Volume }
\end{aligned}
$$

The space between the gas atoms decreases

$$
p_{1}<p_{2}<p_{3}
$$

The possibilities of dependancy:

$$
\begin{aligned}
& x \rightarrow e^{x} \\
& x \rightarrow 1 / x
\end{aligned}
$$

which means the volume becomes half on doubling the pressure.

Formulary Waste Management

Prof. Dr.-Ing. habil W. Bidlingmaier \& Dr.-Ing. Christian Springer
Projekt Orbit | Dr. W. Bidlingmaier | Bauhaus Universität Weimar | www.orbit-online.net

Condition: Temperature and quantity remain constant. Mathematical formula:

$$
\left.V \propto \frac{1}{p}\right|_{\text {const } T, n}
$$

Behaviour at different temperatures produce isotherms

Determining the constant K by linearization of the plot.

Formulary Waste Management
Projekt Orbit | Dr. W. Bidlingmaier | Bauhaus Universität Weimar | www.orbit-online.net

In the Plot: $p \rightarrow 1 / V$ is K the progression

$$
\begin{aligned}
& K=\frac{\Delta \frac{1}{V}}{\Delta p}=\frac{\frac{1}{V_{2}}-\frac{1}{V_{1}}}{p_{2}-p_{1}} \\
& p \propto \frac{1}{V} \text { oaer } \quad p=\Lambda \cdot \frac{1}{V}
\end{aligned}
$$

Example:

A sample of air has a volume of 1.0 K at $10^{\circ} \mathrm{C}$ and 0.5 bar. How much pressure will be needed to compress the air to a volume of $100 \mathrm{~cm}^{3}$ at the same temperature?

Solution:

$\mathrm{p}_{1}=\mathrm{K} \cdot 1 / \mathrm{V}_{1}$
$K=0.5 \cdot 1000=500$
$p_{2}=500 / 100=5$ bar

2 Laws of Boyle and Gay - Lussac

The law of Gay-Lussac states that the volume of an ideal gas is directly proportional to the temperature at constant pressure and quantity. A gas expands on heating and contracts on cooling.

$$
V(T)=V_{0}\left(1+\gamma_{0}\left[T-T_{0}\right]\right) \quad \text { mit } \quad \gamma_{0}=\frac{1}{T_{0}}=\frac{1}{273,15 \mathrm{~K}}
$$

T_{0} is the temperature at point 0 on the celsius scale, that is 273.15 K or $0^{\circ} \mathrm{C}$. In contrast to this T is the temperature to be deduced by which care should be taken that the same unit is used as with T_{0}. Analogous to this, V is the volume at $\mathrm{T}, \mathrm{V}_{0}$ the volume at T_{0} and γ_{0} the volume expansion coefficient at T 0 , which is generally $\gamma=1 / T$ for ideal gases.

